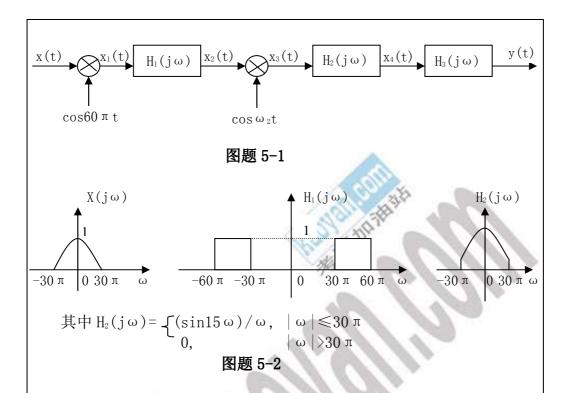
华南理工大学 2004 年攻读硕士学位研究生入学考试试卷

(试卷上做答无效,请在答题纸上做答,试后本卷必须与答题纸一同交回)

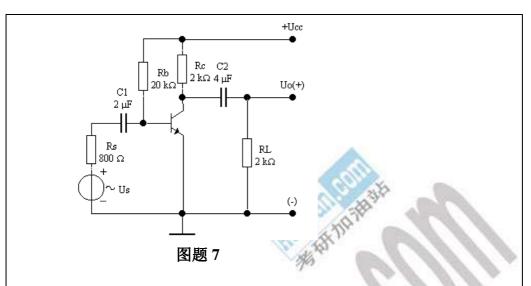

科目名称: 信号系统与电子电路

适用专业: 电路与系统、电磁场与微波技术、通信与信息系统、信号与信息处理、生物医学工程

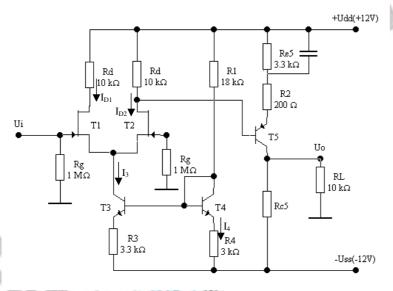
共4页

I. 信号与系统(共75分)

- 一、求解下列各小题:
 - 1. 画出信号 $x[n]=(1/2)^n u[n]$ 的偶部。(5 分)
 - 2. 已知离散序列 x[n] = u[n] u[n-4], 求序列 x[n]的 Z 变换。(5分)
 - 3. 求连续周期信号 x(t)=cos2 π t+3cos6 π t 的付立叶级数 a_k。(8 分)
 - 4. 已知一连续 LTI 系统的单位阶跃响应 $s(t)=e^{-3t}u(t)$, 求该系统的单位冲激响应 h(t)。(8分)
 - 5. 设 x(t) 为一带限信号,其截止频率 ω_m = 8 rad/s。现对 x(4t) 抽样,求不发生混迭时的最大间隔 T_{max} (8分)
- 二、已知信号 h(t)=u(t-1)-u(t-2),x(t)=u(t-2)-u(t-4),求卷积 y(t)=h(t)*x(t),要绘出y(t)的波形。(8分)
- 三、己知一个因果离散 LTI 系统的系统函数 H(z) = (6z+3)/(6z+2), 其逆系统也是因果的,其逆系统是否稳定?并说明理由。**(8分)**
- 四、一个离散因果 LTI 系统可由差分方程 y[n]-y[n-1]-6y[n-2]=x[n-1] 描述,
 - a) 求该系统的系统函数 H(z)和它的收敛域;
 - b) 求该系统的单位脉冲响应 h[n]:
 - c) 当 $x[n]=(-3)^n$, $-\infty < n < +\infty$ 时, 求输出 y[n]。(12分)
- 五、图题 5-1 所示系统中,若 x(t) 的频谱 $X(j\omega)$ 和 $H_1(j\omega)$ 、 $H_2(j\omega)$ 如 图题 5-2 所示,若使输出 y(t)=x(t),
 - ① 画出 x₂(t)的频谱 X₂(jω);
 - ② 确定ω₂的值;
 - ③ 求出 H₃(jω), 并画出其波形。(13 分)


Ⅱ. 电子电路(共75分)

六、填空: (共**8分**)


- 1. 某二极管 D,在常温下反向饱和电流 $I_{S}=1.9\times10^{-10} mA$,当正向电压 $U_{D}=0.6V$ 时电流 $I_{D}=$ ______,直流电阻 $R_{D}=$ ______,动态电阻 $r_{d}=$ ______。(2分)
- 2. 测得放大电路中 BJT 的三个电极电流(以流入电极方向为参考正方向)分别为 -0.99mA、 -0.01mA、1mA, 其电流放大倍数 β = _____, α = _____。(**2 分**)
- 4. 由 E-NMOS FET 构成的对称差分放大电路中, $Rd=10k\,\Omega$, $RL=10k\,\Omega$,双端输出方式时,差模电压增益 $A_vd=100dB$;若改接成单端输出方式时,其差模电压增益 $A_vds1=$ _____。(2 分)

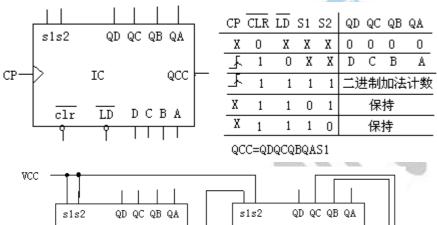
七、某共射电路如图题 7,已知三极管的 $r_{bb'}$ =300 Ω , $r_{b'e}$ =700 Ω , g_m =0. 04s 不考虑 $C_{b'e}$, $C_{b'e}$ =400pF,图中 C_1 =2 μ F, C_2 =4 μ F, R_b =20k Ω , R_s =800 Ω , R_c = R_L =2k Ω ; (12 $\boldsymbol{\beta}$)

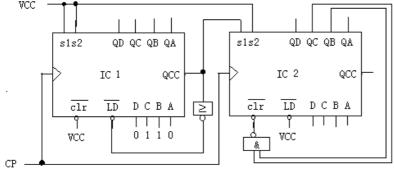
- (1) 计算上、下限截止频率 f_{\parallel}, f_{\perp} ;
- (2) 简要画出幅频、相频特性波特图;

八、放大电路如图题 8 所示,差分放大由 FET 组成, T_1 、 T_2 管的互导

图题 8

 g_m =2mS, T_5 管的β=50, r_{be} =2kΩ, $|U_{BE}|$ =0.7V, 图中 R_d =10kΩ, R_1 =18kΩ, R_2 =200Ω, R_3 =3.3kΩ, R_4 =3kΩ, R_{e5} =3.3kΩ, R_L =10kΩ, 试问:


- (1) 当输入端为零 $(u_i=0)$ 时,若要使输出端的静态电压 $U_o=0$ V, R_{C5} 应为何值?
- (2) 求电压增益 A_U=u_o/u_i (20 分)


九、数制与逻辑代数 (20分)

- 1. 算术式 302÷20=12.1 在哪种数制中成立。
- 2. 用公式法证明: 若 \overline{ab} + ab = 0, 则逻辑式 $\overline{ax + by}$ = $a\overline{x}$ + $b\overline{y}$ 成立。

十、逻辑电路分析 (15分)

根据给出逻辑图与功能表分析图题 10-2 所示电路。

图题 10-2

- 1) 分别画出 IC1 和 IC2 的状态转移图。
- 2) 如果 CP 频率 fcp=100HZ, 求 IC2 的 QA 端输出的脉冲周期和高电平的脉冲宽度。