

2012年青岛农业大学

硕士研究生招生入学考试

(科目代码/名称: 801 生物化学)

— 、	解释下列名词	(無小題3分	. 共30分)
•	カナイナ し ノリイコ ピリ		, ,, ,, ,, ,, ,,

- 1. oxidative phosphorylation 2. 反义链或模板链 3. 亲合层析 4. 不对称转录
- 5. 脂肪酸的 β-氧化作用 6. 减色效应 7. 酶的比活力
- 8. supersecondary structure 9. phosphopentose pathway 10. 沉降系数

二、填空题 (每空 0.5 分, 共 20 分)

- 1. SDS-聚丙烯酰胺凝胶电泳其蛋白质分子的电泳迁移率主要取决于___, 而聚丙烯酰胺凝胶电泳,蛋白质分子的迁移率取决于。
 - 2. 在有竞争性抑制剂存在时,酶催化反应的 V_{max}, K_m。
 - 3. 谷氨酸的 $pK_{1(\alpha\text{-COOH})}=2.19$, $pK_{2(\alpha\text{-NH3}^+)}=9.67$, $pK_{R(R \pm)}=4.25$, 谷氨酸等电点为___。
- 4.核酸的一级结构中,脱氧核苷酸或核苷酸的连接具有严格的方向性,由前一个核苷酸的 与下一个核苷酸的 之间形成了 3′.5′-磷酸二酯键。
 - 5. 生物体中 ATP 的合成途径有三种,即___、__和__。
- 6. 一分子脂肪酸活化后需____转运才能由胞液进入线粒体内氧化,氧化产物乙酰 CoA 需经____才能将其带出线粒体参与脂肪酸合成。
- 7. 体内的脱氧核糖核苷酸是由各自相应的核糖核苷酸在____水平上还原而成的,催化 UDP 转变为 dUDP 的酶是____,此酶需要____和___为辅因子。此反应的最终供氢体是___。
- 8. 当 RNA 合成时, RNA 聚合酶沿有意义链移动的方向是___, RNA 链合成的方向是___。
 - 9. 新合成的多肽链的加工修饰包括 、 等。
- 10. 1961 年,Jacob 和 Monod 提出了关于原核生物基因结构及表达调控的___学说。该结构通常是由___、__、__三种成分组成。
- 11. 从 A_{260}/A_{280} 的比值可判断核酸样品的纯度,纯 DNA 的 A_{260}/A_{280} 应大于____,纯 RNA 的 A_{260}/A_{280} 应达到____。
 - 12. 嘌呤核苷酸的嘌呤环上的第 1 位与第 9 位 N 原子分别来自于氨基酸 和 。
 - 13. 乙醛酸循环含有 和 两个特异酶。
- 14. 核酸、变性核酸、水解后的核酸对 260 nm 的紫外吸收能力不一,其中___吸收能力最大,而___吸收能力最小,这是由于___。
 - 15. 乳糖操纵子的诱导物是____, 色氨酸操纵子的辅阻遏物是____。
- 16. 当 DNA 复制时,一条链是连续的,另一条是不连续的,称为___复制;复制得到的子代分子,一条链来自亲代 DNA,另一条链是新合成的,这种方式叫___复制。
 - 17. Sephadex G-25 使蛋白质脱盐,从层析柱中首先洗脱下来的是___。
 - 18. TPP 的中文名称是。

三、选择题(每小题 1分,共10分)

- 1. 下列关于 DNA 复制和转录的描述中哪项是错误的?()
- A. 在体内以一条 DNA 链为模板转录,而以两条 DNA 链为模板复制
- B. 在这两个过程中合成方向都为5′→3′
- C. 复制的产物通常情况下大于转录的产物

您所下载的资料来源于 kaoyan.com 考研资料下载中心 获取更多考研资料,请访问 http://download.kaoyan.com

You can make it. M
D. 两过程均需 RNA 引物
2. 病毒中具有 mRNA 功能的链称为()。
A. (+)链 B. (-)链 C. 有意义链 D. 反意义链
3. 当 DNA 加热变性时,下列叙述错误的是?()
A. 黏度下降 B. 沉降系数加大 C. 紫外吸收降低 D. 发生螺旋-线团转换
4. 典型的 α 螺旋是()。
A. 2.6 ₁₀ B. 3 ₁₀ C. 3.6 ₁₃ D. 4.0 ₁₅
5. 长链脂肪酰 CoA 的 β 氧化作用是在()细胞器上进行的。
A. 微粒体 B. 内质网 C. 线粒体 D. 细胞膜
6. 与 mRNA 的 ACG 密码子相对的反密码子是()。
A. UGC B. TGC C. GCA D. CGU
7. 细胞内能荷高时,不受抑制的代谢途径是()。
A. EMP 途径 B. TCA 循环 C. PPP 途径 D. 氧化磷酸化
8. 通过代谢可转变为烟酸的氨基酸是()。
A. Trp B. Phe C. Val D. Tyr
9. K _m 值的意义是指()。
A. 与酶对底物的亲和力无关 B. 是 V 达到 V_{max} 所需的底物浓度
C. 同一组酶的同工酶的 K_m 值相同 D. 是 V 达到 $1/2$ V_{max} 的底物浓度
10. T _m 是指()的温度。
A. 双螺旋 DNA 达到完全变性时 B. 双螺旋 DNA 开始变性时
C. 双螺旋 DNA 结构失去 1/2 时 D. 双螺旋结构失去 1/4 时
四、判断题(每小题 0.5 分, 共 10 分)
1. 胸腺嘧啶核苷酸只存在于 DNA 分子中。()
2. 柠檬酸循环中底物水平磷酸化直接生成的是 ATP。()
3. 核苷中碱基和糖的连接一般是 C-C 连接的糖苷键。()
4. 糖酵解过程没有氧的消耗,但仍可进行氧化还原反应,而若没有无机磷酸的参加,
则酵解反应将终止。()
5. 盐析法可使蛋白质沉淀,但不引起变性,所以盐析法常用于蛋白质的分离制备。(
6. 非竞争性抑制作用可通过提高酶浓度的方式解除抑制作用。()
7. 真核生物的 5S、18S、28 SrDNA 通常组成一个单位进行转录。()
8. 逆转录酶和 DNA 聚合酶一样, 因都以 4 种 dNTP 为底物, 合成 DNA 时都需要引物,
都具有校对功能。()
9. 寡聚酶一般是指由多个相同亚基组成的酶分子。()
10 蔬菜中的 β-胡萝卜素在人体内可以转化为维生素 A。()
11. 细胞代谢的调节主要是通过控制酶的作用实现的。()
12. 在蛋白质合成中,起始复合物合成时起始 tRNA 结合在核糖体的 A 位。()
13.20 种天然氨基酸都具有旋光对映体。()
14. 真核生物的冈崎片段比原核生物的要长。()
15. 在熔解温度时,双链 DNA 分子会变为无序的单链分子。()
16. 反密码子的第一位碱基若为 I, 它可与密码子第三位的 A、U 或 C 的密码子通过氢
键配对结合。因此,当反密码子的第一个碱基为时 I,这种 tRNA 可读三种不同的密码子。(
17. 磷酸肌酸分子中含高能磷酸键。()
18. 酶的最适 pH 与酶的等电点是两个不同的概念,但两者之间有相关性,两个数值通
常比较接近或相同。()

您所下载的资料来源于 kaoyan.com 考研资料下载中心获取更多考研资料,请访问 http://download.kaoyan.com

- 19. 脂肪酸活化为脂酰 CoA 时,需要消耗 2 个高能磷酸键。()
- 20. 二硫键和蛋白质的三级结构密切有关,因此没有二硫键的蛋白质就只有一级和二级结构。()

五、问答题(共80分)

- 1. 简要说明为什么大多数球状蛋白质在溶液中具有如下性质:
- ①在低 pH 时沉淀;
- ②当离子强度从零增至高值时,先是溶解度增加,然后溶解度降低,最后沉淀;
- ③在等电点 pH 时溶解度呈现最小;
- ④加热时沉淀;
- ⑤在与水能混溶的有机溶剂中沉淀。 (10分)
- 2. 对比脂肪酸的合成与分解代谢,说明脂肪酸生物合成并非其氧化的简单逆转。(10分)
- 3. 请根据下面的信息确定蛋白质的亚基组成:①用凝胶过滤层析测定,分子质量是 200 kDa; ②用 SDS-PAGE 测定,分子质量是 100 kDa; ③在 β -巯基乙醇存在下用 SDS-PAGE 测定,分子质量是 40 kDa 和 60 kDa。(10 分)
 - 4. 某生物化学家发现并纯化了一种新的酶,纯化过程及结果如下页表:

操作程序	总蛋白(mg)	活性(U)
1 粗提取	20 000	4 000 000
2 盐析沉淀	5 000	3 000 000
3 pH 沉淀	4 000	1 000 000
4 离子交换层析	200	800 000
5 亲和层析	50	750 000
6 排阻层析	45	675 000

根据表中结果:①计算每一步纯化程序后酶的比活性。②指出哪一步对酶的纯化最有效。 ③指出哪一步对酶的纯化无效。④表中结果能否说明该酶已被纯化?若估计酶的纯化程度还 需要做些什么?⑤若该单纯酶由 682 个氨基酸残基组成,该酶的相对分子质量约为多少? (10分)

- 5. 运用操纵子模型解释酶的阻遏。(10分)
- 6. 为什么蛋白质在细胞中能保持相对的稳定性? (10分)
- 7. 层析法均采用交联的多聚物作为支持介质,为什么在凝胶过滤时相对分子质量小的蛋白质有较长的停留时间,而在 SDS-聚丙烯酰胺凝胶电泳时它又跑得最快? (10 分)
- 8. 分离蛋白质混合物的方法很多,选择不同的分离方法主要参考蛋白质在溶液中的哪些特性?若有一批含大量无机盐的蛋白样品需要你纯化,你将选择什么样的方法?说明理由。(10分)