山东轻工业学院

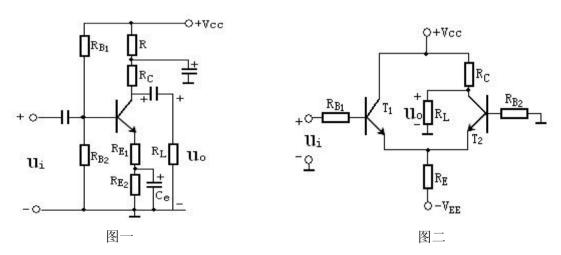
2006 年攻读硕士学位研究生入学考试试题

(答案一律写在答题纸上,答在试题上无效,试题附在答卷内交回) 考 试 科 目: 电子技术

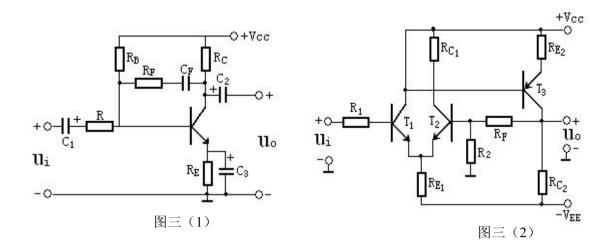
试题适用专业: 制浆造纸工程、检测技术与自动化装置

A 卷共 5 页

一、(15 分) 电路如图一所示,已知晶体管的 β =100, U_{BEQ} =0.7V, V_{CC} =12V,

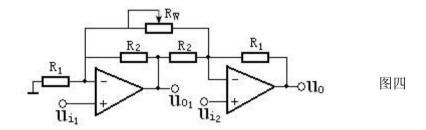

 R_{B1} =210K Ω , R_{B2} =50K Ω , R_{C} =2K Ω ,R=100 Ω , R_{E1} =300 Ω , R_{E2} =700 Ω , R_{L} =2K Ω , r_{bb} =100 Ω ,所有电容在交流时均可视为短路,在直流时均可视为开路。

- 1. 画出直流通路,求静态工作点 IEO、ICO;
- 2. 画出交流通路和微变等效电路, 求 Au、Ri、Ro。。

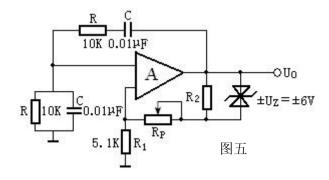

二、(15 分) 电路如图二所示。已知 R_{B1} = R_{B2} = $2K\Omega$, R_{C} = R_{L} = $10K\Omega$, R_{E} = $5.1K\Omega$,

+ V_{CC} =+24V, - V_{EE} = -12V, $β_1$ = $β_2$ =60, r_{be1} = r_{be2} =1KΩ, χ:

- 1. 差模电压放大倍数 A_{ud};
- 2. 差模输入电阻 R_{id} 和输出电阻 R_{od} , 并说明 u_o 和 u_i 的相位关系;
- 3. 共模电压放大倍数 Auc 和共模抑制比 KCMR;
- 4. 若将 R_E 换成一恒流源,则对 A_{uc} 和 A_{ud} 及 KCMR 各有何影响?



- 三、(15分) 电路如图三(1)(2) 所示,
- 1. 判断两电路中各引入了哪些反馈? 各是什么类型的反馈?
- 2. 在图(2)中,若级间反馈为深度负反馈,试估算电压放大倍数 A_{uf}(写出表达式即可)。

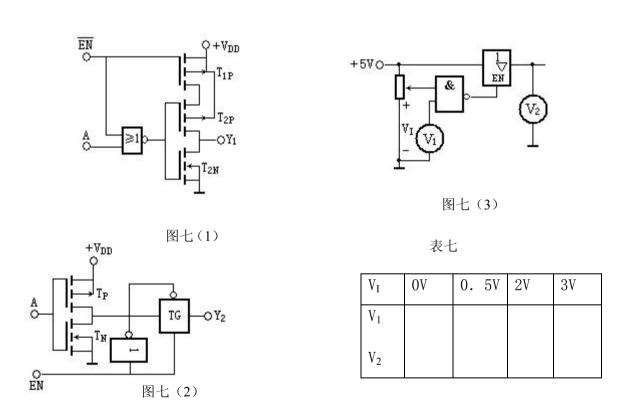

四、(15分)电路如图四所示,其中所有运放均为理想运放,

- 1. 若 R_W =∞, 试求此时的 u_0 和 u_{i1} 、 u_{i2} 的关系表达式;
- 2. 若 $R_W \neq \infty$, 试求此时的 u_0 和 u_{i1} 、 u_{i2} 的关系表达式。

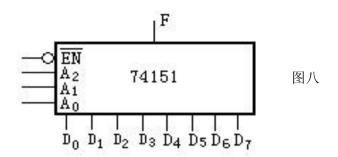
五、(15分)设运放 A 是理想器件,试分析图五所示正弦波振荡电路,

- 1. 为满足振荡条件, 试在图中用十、一号标出运放的同相端和反相端;
- 2. 为能起振, R_P和 R₂两个阻值的和应大于何值?
- 3. 求电路的振荡频率; 4. 试求稳定振荡时输出电压峰值的表达式。

A 卷第 2 页

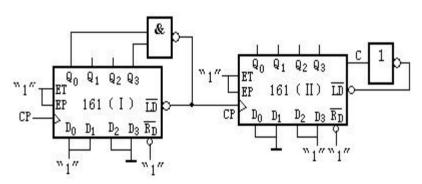

六、(15分) 1. 根据反演规则,写出函数F的反函数 \overline{F} ,并将 \overline{F} 化为最简与或式。

$$F = \overline{A + B} + \overline{C}D + \overline{C} + \overline{D} + A\overline{B}$$


2. 用卡诺图法将 F (A, B, C, D) = Σ_m (0, 1,4,8,12,13) + Σ_d (2,3,6,10,11,14) 化简为最简与或式。

七、**(16分)** 1. 判断图七(1)(2) 所示电路的逻辑功能,要求给出简单的判断过程。

2. TTL 门输出高电平 3. 6V,输出低电平 0. 3V,阈值电压 1. 4V。由 TTL 三态门及 TTL 与非门构成图七(3)所示电路,请将电压表读数添入表七中。(设电压表的内阻都为 $100~\mathrm{K}\,\Omega$)

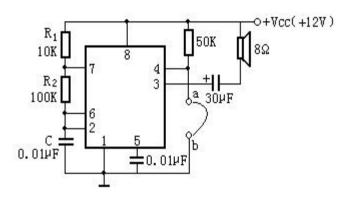


八、(14 分)试设计一个组合逻辑电路,使它能从四位二进制数中选出被 4, 5, 6 整除的数(0 能被任何数整除)。用 8 选 1 数据选择器 74LS151 实现该逻辑电路(可附加必要的门电路)。74LS151 框图如图八所示, A_2 、 A_1 、 A_0 为地址端, D_7 ~ D_0 为输入数据端,F 为输出端, \overline{EN} 为片选端(低电平有效)。

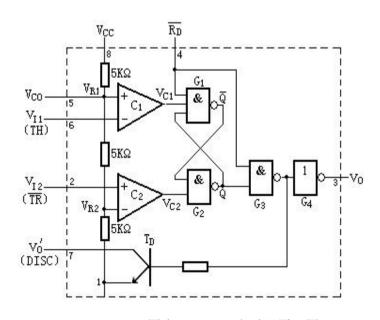
九、(15分)图九(1)所示为两片四位同步二进制加法计数器 74LS161 组成的计数器电路,图九(2)为 74LS161 的功能表,

- 1. 试分析回答:芯片(I)和(II)的计数模值各为多少?级间采用了什么连接方式?
 - 2. 分别画出芯片(I)和(II)的有效状态循环图;
- 3. 如果该电路作为分频器使用,则(II)片 C 端的输出脉冲和 CP 脉冲的分频比为多少?

图九(1)


74LS161功能表

CP	$\overline{ ext{LD}}$	$\overline{R_D}$	ET	EP	工作状态
×	×	0	×	×	清 零
几	0	1	×	×	预置数据
×	1	1	1	0	保 持
×	1	1	0	×	保持(但C=0)
凡	1	1	1	1	计 数


图九 (2)

十、(15 分)图十(1)所示电路是一个由555定时器构成的防盗报警电路。A、B 两端被一细铜丝连接,此铜丝置于盗窃者必经之路。当盗窃者闯入室内将铜丝碰断后,扬声器发出报警声。

- 1. 试问 555 接成什么电路?
- 2. 说明本报警电路的工作原理;
- 3. 求发出的报警声音的频率。

图十(1)

图十(2)555定时器原理图