

浙江理工大学

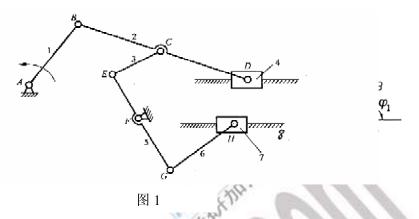
二〇一〇年硕士学位研究生招生入学考试试题

考试科目: 机械原理 代码: 934

((*请考牛在答题纸	上炫顯	在此试题纸	
•	. "何为什代替败纵	一个映。	化山瓜双双红	1 台班儿双儿

`	W. J. T. E. L. KOMIT. L. KOMIN.
—.	填空题 (共 20 分,每空格 1 分)
1.	两构件通过面接触的运动副称为。
2.	两构件通过面接触的运动副称为。 当两构件组成转动副时,其相对速度瞬心在 处;组成移动副时,其瞬心在 处。
	其瞬心在 处。
3.	在曲柄摇杆机构中,如果行程速度变化系数用 K 表示,则 K 的大小反映
	了该机构的运动特性。
4.	机构处于死点位置时,其传动角 γ 为,压力角 α 为。
	在设计直动滚子从动件盘形凸轮机构的工作廓线时,如果压力角超过了
	许用值,应;如果廓线出现变尖现象,应。
6.	经过负变位的齿轮与标准齿轮相比较,其分度圆齿厚,齿顶高。
	按标准中心距安装的渐开线直齿圆柱标准齿轮,节圆与 相重合,
	啮合角在数值上等于上的压力角。
8.	机器等效动力学模型中的等效力(矩)是根据 的原则进行转化
	的;等效质量(转动惯量)是根据的原则进行转化的。
9.	一斜齿轮法面模数 $m_n = 3$ mm ,分度圆螺旋角 $\beta = 15$ ° ,其端面模数 m_t
9	
10.	—— 刚性转子静平衡的力学条件是;而动平衡的力学条件是。
11.	能实现间歇运动的机构有
	,
	、单项选择题 (共 20 分,每小题 2 分)
1.	以下几组连杆机构的杆长关系中,只能构成双摇杆机构。
	A. 20, 40, 20, 40
	B. 20, 60, 30, 40
	C. 20, 50, 30, 40
	你所下裁的资料来源于 kaovan com 老研资料下裁中心

- D. 20, 60, 40, 50
- 2. 渐开线直齿圆柱齿轮与齿条啮合时,其啮合角恒等于齿轮____上的压力角。
 - A. 基圆
 - B. 齿顶圆
 - C. 分度圆
 - D. 齿根圆
- 3、达到动平衡的回转件______是静平衡的。
 - A. 一定
 - B. 不一定
 - C. 有可能
 - D. 不可能
- 4. 直齿圆锥齿轮的标准参数 $(m \times \alpha \times h_a^* \times c^*)$ 是指其____。
 - A. 大端的参数值
 - B. 小端的参数值
 - C. 平均分度圆处的参数值
 - D. 可以自定义
- 5. 下列圆锥齿轮传动的传动比计算公式: $i_{12} = \frac{d_2}{d_1}$, $i_{12} = \frac{z_2}{z_1}$, $i_{12} = \frac{\sin \delta_2}{\sin \delta_1}$, $i_{12} = \frac{\cos \delta_2}{\cos \delta_1}$ 。中有——是正确的。
 - A. 1个
 - B. 2个
 - C. 3个
 - D. 4个
- 6. 作刚性转子动平衡实验时,平衡面(校正平面)应选___。
 - A. 1个
 - B. 2个
 - C. 3个



D. 4个

- 7. 在设计铰链四杆机构时,应使最小传动角 γ_{min} ____。
 - A. 尽可能小一些
 - B. 尽可能大一些
 - C. 等于45°
 - D. 为0°
- 8. 电影放映机的间歇卷片运动,应选用_____来实现。
 - A. 棘轮机构
 - B. 齿轮齿条机构
 - C. 凸轮机构
 - D. 槽轮机构
- 9. 用范成法切制渐开线齿轮时,齿轮根切的现象可能发生在 的场合。
 - A. 模数较大
 - B. 模数较小
 - C. 齿数较多
 - D. 齿数较少
- 10. _____盘形凸轮机构的压力角恒等于常数。
 - A. 摆动平底推杆
 - B. 摆动尖顶推杆
 - C. 摆动滚子推杆
 - D. 直动滚子推杆
- 三、1) 试计算如图 1 所示机构的自由度(圆弧箭头表示的构件为原动件)。
 - 2) 该机构是由哪些杆组构成的?请将那些杆组从机构中一一分离出来,并注明拆组的顺序及其级别。

3) 若以构件7为原动件,则该机构为几级机构?(15分)

四、如图 2 所示机构中,已知各构件的尺寸及原动构件 1 的角速度 ω_1 (常数),转向如图所示。在图中标出所有瞬心位置,并用瞬心法求构件 3 的角速度 ω_3 (写表达式)?(10 分)

五、如图 3 所示铰链四杆机构 ABCD 中,已知各杆长度 $l_{AB}=25~\mathrm{mm}$, $l_{BC}=65~\mathrm{mm}$, $l_{CD}=55~\mathrm{mm}$, $l_{AD}=85~\mathrm{mm}$ 。试求:(15 分)

- 1) 试证该机构为曲柄摇杆机构;
- 2) 作图求出摇杆的两个极限位置,并在图中标出极位夹角 θ ;
- 3) 当曲柄为主动件时,作出机构传动角处于最小时的机构位置图,并量出最小传动角 γ_{\min} ;
- 4) 若要使该机构变成双曲柄机构,最简单的方法是什么?

图 3

六、如图 4 所示为一偏心圆盘形成的凸轮机构。(12 分)

- 1) 试画出凸轮的基圆,并标出基圆半径 r_0 。
- 2) 试画出凸轮机构在图示位置的压力角 α_1 。
- 3)试画出凸轮自图示位置转过 90°后机构的 压力角 α_2 。4)试画出凸轮自图示位置转过 90°后从动件

的位移S。

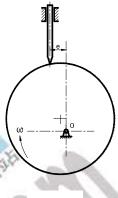
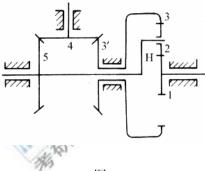
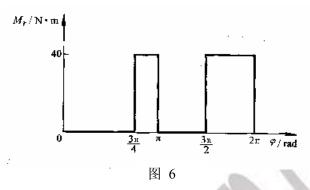


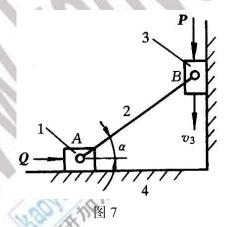
图 4

- 七、设已知一对渐开线标准斜齿轮传动, $z_1 = 20$, $z_2 = 40$, $m_n = 8$ mm, $\alpha_n = 20^\circ$, $h_{an}^* = 1$, $c_n^* = 0.25$,并初取 β =15 $^\circ$ 。试求:(14 分)
 - 1) 该传动的中心距 a? (a 值应圆整为整数,并向上圆整成尾数为 0 或 5)
 - 2) 中心距a圆整后, 重算相应的螺旋角 β 值;
 - 3) 小齿轮的分度圆直径、基圆直径?
- 八、轮系如图 5 示,已知各轮齿数为 Z_1 =22, Z_3 =88, Z_3 '= Z_5 ,试求传动比 i_{15} ?(10 分)




图 5

九、某机械系统以其主轴为等效构件,已知主轴稳定运转一个周期的等效阻力变化规律如图 6 所示。允许的运转速度不均匀系数 $[\delta]$ = 0.05,平均角速度 $\omega_{\rm m}$ =40rad/s,等效驱动力矩为常数。已知 $J = \frac{\Delta W_{\rm max}}{\omega_{\rm m}^2[\delta]}$ 。


试求: (10分)

- 1) 等效驱动力矩 Md;
- 2) 最大盈亏功 ΔW_{max} ;
- 3)等效转动惯量J。

十、在图 7 所示机构中,已知 *AB* 杆的长度为 *l* ,两滑块销轴的半径均为 *r* , *P* 为驱动力,Q 为生产阻力;设各接触表面的摩擦系数均为已知,并忽略各构件的重力和惯性力。试画出滑块 3 等速下降时各构件受力分析图。(A、B 转动副处的摩擦圆半径自定)。(12 分)

- 十一、在机电产品中,一般均采用电动机作为动力源,为了满足产品的动作要求,经常需要把电动机输出的旋转运动进行变换(例如改变转速的大小和方向,或改变运动型式),以实现产品所要求的运动型式。(12分)
 - 1) 现要求把电动机的旋转运动变换为直线运动,请列出 5 种可实现该运动变换的传动型式,并画出机构示意图。

2) 若要求机构的输出构件能实现复杂的直线运动规律,则该用何种传动型式?

