

考试大纲

考试科目: 高等数学 考试形式和试卷结构

(1) 试卷满分及考试时间

试卷满分为150分,考试时间为180分钟。

(2) 答题方式

答题方式为闭卷、笔试。

(3) 试卷题型结构

单项选择题 填空题 解答题(包括证明题)

(1) 函数、极限、连续

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、 分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 (2) 一元函数微分学

导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率 圆与曲率半径

(3) 一元函数积分学

原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用

(4) 多元函数微积分学

多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数的偏导数和全微分 多元复合函数、隐函数的求导法 二阶偏导数 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计

算

(5) 常微分方程

常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 微分方程的简单应用

