

装备指挥技术学院博士研究生招生考试 现代控制理论(3004)考试大纲

第一部分 考试说明

一、考试性质

博士研究生招生考试是为学院招收博士研究生而设置的。现代控制理论为招生考试一门笔试科目,设置该科目的指导思想是既要有利于学院对高层次、高素质人才的选拔,又要有利于促进考生对本科目的学习掌握。

二、考试基本要求

要求考生能够较系统地理解状态空间理论及其分析方法,熟悉系统能控能观性理论、李雅普诺夫稳定性理论,掌握线性定常系统的状态反馈和状态观测器设计,并能够灵活运用所学知识解决实际问题。考生应能:

- (一)理解和熟练掌握状态空间模型的建立方法。
- (二)准确理解和掌握线性定常系统状态方程的求解方法。
- (三)能够运用控制理论的相关原理分析控制系统的能控性、能观性和稳定性。
- (四)能够通过状态反馈、极点配置和构造状态观测器等方法,进行复杂系统的综合与优化设计。
 - (五)能够结合本专业理论知识,分析和设计基本的工程实践问题。

三、考试形式及考试时间

现代控制理论科目考试采用闭卷、笔试形式,考试时间为180分钟。

四、试卷结构

(一) 试卷满分为100分。

(二)内容比例

线性系统的状态空间描述 约 20 分 线性系统的运动分析 约 20 分 线性系统的能控性和能观性分析 约 20 分 线性系统的李雅普诺夫稳定性分析 约 20 分 线性系统的设计 约 20 分

(三) 题型比例

计算题约占 30%分析题约占 70%

第二部分 考查知识范围

一、控制系统的状态空间描述

线性系统外部描述的主要方法及相互之间的转换,线性系统状态空间描述方法,线性系统状态空间表达式的建立,线性系统的状态空间描述的四种标准型及其相互转换,离散系统的状态空间描述及表达式的建立。其中线性系统状态空间表达式建立,线性系统的状态空间描述的四种标准型及其相互转换,由状态空间表达式建立传递函数是该部分的重点。

(一)线性系统的描述方法概述

微分或者差分方程(组)描述法,框图描述法,传递函数描述法,线性系统的状态空间描述法。

(二)线性系统的状态空间描述

线性系统的状态空间基本概念,系统的状态空间描述,线性系统状态空间描述的建立,离散系统的状态空间描述。

二、控制系统的运动分析

线性定常系统状态的求解方法,状态转移矩阵及其性质,状态转移矩阵的求解方法,离散时间系统状态方程的求解方法,线性定常系统状态方程的离散化,线性定常系统状态方程的非齐次解。其中连续系统状态转移矩阵的性质及求解方法,离散时间系统的状态方程的求解方法,线性定常系统状态方程的非齐次解是本部分的重点。

(一)线性定常系统状态方程的解

时域解,齐次状态方程的变换解,状态转移矩阵及其性质,状态转移矩阵的 计算,系统矩阵的计算。

(二)离散时间系统状态方程的解

离散时间系统的状态方程的两种求解方法,连续时间系统动态方程的离散 化。

三、线性控制系统的能控性和能观性

线性系统的能控性、能观性的基本概念、基本性质及其判别方法,系统能控性与能观性的对偶关系,线性系统的结构分解,线性定常离散系统的能控性、线性定常(连续或离散)系统输出的能控性,系统能控性、能观性与系统传递函数的关系,线性系统的实现。其中系统能控性、能观性的判据,线性系统的能控性实现、能观性实现及最小实现的条件及方法是本部分重点。

(一)线性系统的能控性

能控性定义,能控性的基本性质,直接由矩阵 A、B 的结构判断系统能控性,

由能控标准形判断系统能控性,由传递函数判断系统的能控性,计算机控制系统的状态空间表达式。

(二)线性系统的能观性及对偶关系

线性系统的能观性定义及其性质,线性系统的能观性判断法则,能控性与能观性的对偶关系。

(三)线性系统的结构分解

能控性、能观性在线性非奇异变换下的属性,按能控性的结构分解,按能观性的结构分解,按能控性和能观性分解。

(四)线性系统的实现

卡尔曼-吉伯特定理,判断系统能控且能观的充要条件,系统实现问题的定义,实现的基本属性,能控性实现和能观性实现,最小实现。

四、控制系统的李雅普诺夫稳定性分析

系统各种稳定性的定义,系统的平衡状态及其求解,Lyapunov 方程,系统的 Lyapunov 函数及其确定方法,系统稳定性判断的 Lyapunov 第一方法、第二方法,线性系统的 Lyapunov 稳定性分析,Lyapunov 稳定性分析的应用。其中系统各种稳定性定义与联系,系统 Lyapunov 函数的求解,Lyapunov 第二方法分析动态系统的稳定性,Lyapunov 稳定性分析的应用是本部分的重点。

(一) 动态系统稳定性定义

BIBO 稳定, Lyapunov 意义下的稳定性, 外部稳定性和内部稳定性的关系, 纯量函数正定。

(二) Lyapunov 判别方法

Lyapunov 判别方法, Lyapunov 第二方法, 线性系统的 Lyapunov 稳定性分析。

(三) Lyapunov 稳定性分析的应用

线性化系统平衡点的稳定性,可作为对动态系统瞬态响应性能的估算,可用 于解参数最优问题,可设计基于二次型性能指标的最优控制系统。

五、线性定常控制系统的综合

控制系统基本结构及其特性,极点配置、系统镇定、状态重构、解耦控制、状态观测器的基本概念,基于输出反馈的极点配置条件和极点配置算法,基于状态反馈的极点配置条件和极点配置算法,反馈系统镇定的条件,状态观测器的实现方法,观测器的存在条件,观测器的设计,带状态观测器的控制系统结构、数学模型和基本性质,分离定理,带状态观测器的控制系统的设计,解耦控制系统的设计方法。其中基于状态反馈的极点配置条件和极点配置算法,状态反馈系统镇定的充要条件,全维状态观测器的设计步骤,带状态观测器的控制系统的设计方法,解耦控制系统的设计是本部分重点。

(一)线性控制系统的基本结构及其特性

基于输出反馈的控制系统及其特性,基于状态反馈的控制系统及其特性,基于动态补偿器的控制系统,基于解耦控制器的控制系统,两个系统串并联或构成闭环系统的能控性和能观性。

(二)系统设计中的极点配置问题

基于输出反馈的控制系统的极点配置,基于状态反馈的控制系统的极点配置。

(三)状态观测器的设计

状态观测器的实现方法,观测器的存在条件,观测器的设计,带观测器的状态反馈控制系统设计,解耦控制系统的综合。

