2015年中国科学院大学080501材料物理与化学考研大纲_-查字典考研网
 
请输入您要查询的关键词
  查字典考研网 >> 院校信息 >> 考研大纲 >> 2015年中国科学院大学080501材料物理与化学考研大纲

2015年中国科学院大学080501材料物理与化学考研大纲

考研时间: 2014-11-19 来源:查字典考研网

查字典查字典考研网快讯,据中国科学院大学研究生院消息,2015年中国科学院大学材料物理与化学考研大纲已发布,详情如下:

中国科学院大学硕士研究生入学考试《固体物理》考试大纲

本《固体物理》考试大纲适用于中国科学院凝聚态物理及相关专业的硕士研究生入学考试。固体物理学是研究固体的微观结构、物理性质,以及构成物质的各种粒子的运动规律的学科,是凝聚态物理的最大分支。本科目的考试内容包括晶体结构、晶格振动、能带理论和金属电子论等。要求考生深入理解其基本概念,有清楚的物理图象,熟练掌握基本的物理方法,并具有综合运用所学知识分析问题和解决问题的能力。

一考试形式

(一)闭卷,笔试,考试时间180分钟,试卷总分150分

(二)试卷结构

第一部分:简答题,共50分

第二部分:计算题、证明题,共100分

二考试内容

(一)晶体结构

1、单晶、准晶和非晶的结构上的差别

2、晶体中原子的排列特点、晶面、晶列、对称性

3、简单的晶体结构,二维和三维晶格的分类

4、倒易点阵和布里渊区

5、X射线衍射条件、基元的几何结构因子及原子形状因子

(二)固体的结合

1、固体结合的基本形式

2、共价晶体,金属晶体,分子晶体与离子晶体,范德瓦尔斯结合,氢键,马德隆常数

(三)晶体中的缺陷和扩散

1、晶体缺陷:线缺陷、面缺陷、点缺陷

2、扩散及微观机理

3、位错的物理特性

4、离子晶体中的点缺陷和离子性导电

(四)晶格振动与晶体的热学性质

1、一维链的振动:单原子链、双原子链、声学支、光学支、色散关系

2、格波、简正坐标、声子、声子振动态密度、长波近似

3、固体热容:爱因斯坦模型、德拜模型

4、非简谐效应:热膨胀、热传导

5、中子的非弹性散射测声子能谱

(五))能带理论

1、布洛赫定理

2、近自由电子模型

3、紧束缚近似

4、费密面、能态密度和能带的特点

5、表面电子态

(六)晶体中电子在电场和磁场中的运动

1、恒定电场作用下电子的运动

2、用能带论解释金属、半导体和绝缘体,以及空穴的概念

3、恒定磁场中电子的运动

4、回旋共振、德·哈斯-范·阿尔芬效应

(七)金属电子论

1、金属自由电子的模型和基态性质

2、金属自由电子的热性质

3、电子在外加电磁场中的运动、漂移速度方程、霍耳效应

三考试要求

(一)晶体结构

1.理解单晶、准晶和非晶材料原子排列在结构上的差别

2.掌握原胞、基矢的概念,清楚晶面和晶向的表示,了解对称性

3.了解简单的晶体结构以及二维和三维晶格的分类

4.掌握倒易点阵和布里渊区的概念,能够熟练地求出倒格子矢量和布里渊区

5.了解X射线衍射条件、基元的几何结构因子及原子形状因子

(二)固体的结合

1.了解固体结合的几种基本形式

2.理解离子性结合、共价结合、金属性结合、范德瓦尔斯结合等概念

(三)晶体中的缺陷和扩散

1.掌握线缺陷、面缺陷、点缺陷的概念和基本的缺陷类型

2.了解扩散及微观机理

3.了解位错的物理特性

4.大致了解离子晶体中的点缺陷和离子性导电

(四)晶格振动与晶体的热学性质

a)熟练掌握并理解其物理过程,要求能灵活应用:一维链的振动(单原子链、双原子链)、声学支、光学支、色散关系

b)清楚掌握格波、简正坐标、声子、声子振动态密度、长波近似等概念

c)熟练掌握并理解其物理过程,要求能灵活应用:固体热容:爱因斯坦模型、德拜模型

d)了解非简谐效应:热膨胀、热传导

e)了解中子的非弹性散射测声子能谱

(五)能带理论

a)深刻理解布洛赫定理

b)熟练掌握并理解其物理过程,要求能灵活应用:近自由电子模型

c)熟练掌握并理解其物理过程,要求能灵活应用:紧束缚近似

d)深刻理解费密面、能态密度和能带的特点

e)了解电子表面态与晶体内部电子态的区别

(六)晶体中电子在电场和磁场中的运动

a)熟练掌握并理解其物理过程:恒定电场作用下电子的运动

b)能够用能带论解释金属、半导体和绝缘体,掌握空穴的概念

c)熟练掌握并理解其物理过程:恒定磁场中电子的运动

d)能够解释回旋共振、德·哈斯-范·阿尔芬效应

(七)金属电子论

a)熟练掌握金属自由电子的模型和基态性质

b)了解金属自由电子的热性质

c)熟练掌握并理解其物理过程:电子在外加电磁场中的运动、漂移速度方程、霍耳效应

四主要参考教材

黄昆编著,《固体物理学》,第1版,北京大学出版社,2009年9月1日

阎守胜编著,《固体物理基础》,第3版,北京大学出版社,2011年6月1日

中国科学院大学硕士研究生入学考试《物理化学(乙)》考试大纲

本《物理化学》(乙)考试大纲适用于报考中国科学院大学化工类专业的硕士研究生入学考试。物理化学是化学学科的重要分支,是整个化学学科和化工学科的理论基础。它从物质的物理现象和化学现象的联系入手探求化学变化基本规律。物理化学课程的主要内容包括化学热力学(统计热力学)、化学动力学、电化学、界面化学与胶体化学等。要求考生熟练掌握物理化学的基本概念、基本原理及计算方法,并具有综合运用所学知识分析和解决实际问题的能力。

一考试内容

(一)气体的PVT关系

1、理想气体状态方程

2、理想气体混合物

3、气体的液化及临界参数

4、真实气体状态方程

5、对应状态原理及普遍化压缩因子图

(二)热力学第一定律

1、热力学基本概念

2、热力学第一定律

3、恒容热、恒压热、焓

4、热容、恒容变温过程、恒压变温过程

5、焦耳实验,理想气体的热力学能、焓

6、气体可逆膨胀压缩过程

7、相变化过程

8、溶解焓及混合焓

9、化学计量数、反应进度和标准摩尔反应焓

10、由标准摩尔生成焓和标准摩尔燃烧焓计算标准摩尔反应焓

11、节流膨胀与焦耳—汤姆逊效应

12、稳流过程的热力学第一定律及其应用

(三)热力学第二定律

1、卡诺循环

2、热力学第二定律

3、熵、熵增原理

4、单纯pVT变化熵变的计算

5、相变过程熵变的计算

6、热力学第三定律和化学变化过程熵变的计算

7、亥姆霍兹函数和吉布斯函数

8、热力学基本方程

9、克拉佩龙方程

10、吉布斯—亥姆霍兹方程和麦克斯韦关系式

(四)多组分系统热力学

1、偏摩尔量

2、化学势

3、气体组分的化学势

4、拉乌尔定律和亨利定律

5、理想液态混合物

6、理想稀溶液

7、稀溶液的依数性

8、逸度与逸度因子

9、活度及活度因子

(五)化学平衡

1、化学反应的等温方程

2、理想气体化学反应的标准平衡常数

3、温度对标准平衡常数的影响

4、其它因素对理想气体化学平衡的影响

压力对于平衡转化率的影响;惰性组分对平衡转化率的影响;反应物的摩

5、真实气体反应的化学平衡

6、混合物和溶液中的化学平街

(六)相平衡

1、相律

2、杠杆规则

3、单组分系统相图

4、二组分理想液态混合物的气-液平衡相图

5、二组分真实液态混合物的气-液平衡相图

6、二组分液态部分互溶系统及完全不互溶系统的气-液平衡相图

7、二组分固态不互溶系统液-固平街相图

8、二组分固态互溶系统液-固平衡相图

9、生成化合物的二组分凝聚系统相图

10、三组分系统液-液平衡相图

(七)电化学

1、电解质溶液的导电机理及法拉第定律

2、离子的迁移数

3、电导、电导率和摩尔电导率

4、电解质的平均离子活度因子

5、可逆电池及其电动势的测定

6、原电池热力学

7、电极电势和液体接界电势

8、电极的种类

9、原电池设计举例

10、分解电压

11、极化作用

12、电解时的电极反应

(八)统计热力学初步

1、粒子各运动形式的能级及能级的简并度

2、能级分布的微态数及系统的总微态数

3、最概然分布与平衡分布

4、玻耳兹曼分布

5、粒子配分函数的计算

6、系统的热力学能与配分函数的关系

7、系统的摩尔定容热容与配分函数的关系

8、系统的熵与配分函数的关系

9、其它热力学函数与配分函数的关系

10、理想气体反应的标准平衡常数

(九)界面现象

1、界面张力

2、弯曲液面的附加压力及其后果

3、固体表面

4、液-固界面

5、溶液表面

(十)化学动力学

1、化学反应的反应速率及速率方程

2、速率方程的积分形式

3、速率方程的确定

4、温度对反应速率的影响

5、典型复合反应

6、复合反应速率的近似处理法

7、链反应

8、气体反应的碰撞理论

9、势能面与过渡状态理论

10、溶液中反应

11、多相反应

12、光化学

13、催化作用的通性

14、单相催化反应

15、多相催化反应

(十一)胶体化学

1、胶体系统的制备

2、胶体系统的光学性质

3、肢体系统的动力性质

4、溶胶系统的电学性质

5、溶胶的稳定与聚沉

6、悬浮液

7、乳状液

8、泡沫

9、气溶胶

10、高分子化合物溶液的渗透压和粘度

二考试要求

(一)气体的PVT关系

掌握理想气体状态方程和混合气体的性质(道尔顿分压定律、阿马加分容定律)。了解实际气体的状态方程(范德华方程)。了解实际气体的液化和临界性质。了解对应状态原理与压缩因子图。

(二)热力学第一定律

明确热力学的一些基本概念,如体系、环境、状态、功、热、变化过程等。掌握热力学第一定律和内能的概念。熟知功与热正负号和取号惯例。明确准静态过程与可逆过程的意义及特征。明确U及H都是状态函数,以及状态函数的特性。较熟练地应用热力学第一定律计算理想气体在等温、等压、绝热等过程中的ΔU、ΔH、Q和W。能熟练应用生成热、燃烧热计算反应热。会应用盖斯定律和基尔霍夫定律进行一系列计算。了解卡诺循环的意义。

(三)热力学第二定律

明确热力学第二定律的意义及其与卡诺定理的联系。理解克劳修斯不等式的重要性。注意在导出熵函数的过程中,公式推导的逻辑推理。熟记热力学函数U、H、S、F、G的定义,明确其在特殊条件下的物理意义和如何利用它们判别过程变化的方向和平衡条件。较熟练地运用吉布斯-亥姆霍兹公式和克老修斯-克拉贝龙方程式。掌握熵的统计意义。了解热力学第三定律,明确规定熵的意义、计算及其应用。

(四)多组分系统热力学

熟悉溶液浓度的各种表示法及其相互关系。掌握理想溶液定义、实质和通性。掌握拉乌尔定律和亨利定律。了解逸度和活度的概念,了解如何利用牛顿图求气体的逸度系数。明确偏摩尔量和化学势的意义。掌握表示溶液中各组分化学势的方法。了解稀溶液依数性公式推导和分配定律公式的推导和热力学处理溶液问题的一般方法。

(五)化学平衡

掌握反应等温式的应用。掌握均相和多相反应的平衡常数表示法。理解ΔrGm0的意义,由ΔrGm0估计反应的可能性。熟悉KP0、KP、KX、KC的意义、单位及其关系。了平衡常数与温度、压力关系和惰性气体对平衡组成的影响,并掌握其计算方法。能根据标准热力学函数的数据计算平衡常数。了解同时平衡、您所下载的资料来源于

反应耦合、近似计算等处理方法。

(六)相平衡

掌握相、组分数和自由度的定义。了解相律的推导过程及其在相图中的应用。掌握杠杆规则在相图中的应用。在双液系中以完全互溶的双液系为重点掌握P-X图和T-X图。在二组分液—固体系中,以简单共熔物的相图为重点,掌握相图的绘制及其应用。对三组分体系,了解水盐体系相图的应用,了解相图在萃取过程中的应用。

(七)电化学

掌握电导率、摩尔电导率的意义及其与溶液浓度的关系。了解离子独立移动定律及电导测定的一些应用。熟悉迁移数与摩尔电导率、离子迁移率之间的关系。掌握电解质的离子平均活度系数的意义及其计算方法。了解电解质溶液理论(主要是离子氛的概念),并会使用德拜-休克尔极限公式。掌握电动势与ΔrGm的关系,熟悉电极电势的符号惯例。熟悉标准电极电势及其应用(包括氧化能力的估计,平衡常数的计算等)。对于所给的电池能熟练、正确地写出电极反应和电池反应并能计算其电动势。明确温度对电动势的影响及ΔrHm和ΔrSm的计算。了解分解电压的意义。了解产生极化作用的原因。

(八)统计热力学初步

了解用最概然分布的微观状态数代替整个体系的微观状态数的原因。明确配分函数定义及其物理意义。了解定位体系与非定位体系的热力学函数的差别。了解平动、转动、振动配分函数及其对热力学函数的贡献。

(九)界面现象

掌握表面吉布斯函数、表面张力的概念,了解表面张力与温度的关系。掌握弯曲表面的附加压力产生的原因及其与曲率半径的关系,会使用杨—拉普拉斯公式进行简单计算。了解弯曲表面上的蒸气压,学会使用Kelvin公式。理解吉布斯吸附等温式及各项的物理意义,并能进行简单的计算。了解表面活性物质结构特性、表面活性剂的分类及其应用。了解液—固界面的铺展与润湿现象。理解气—固表面的吸附本质、吸附等温线的主要类型和吸附热力学。

(十))化学动力学

掌握等容反应速率的表示法、基元反应、反应级数、反应分子数等基本概念。掌握具有简单级数的反应的速率方程和特征,并能够由实验数据确定简单反应的级数。对三种典型的复杂反应(对峙反应、平行反应和连串反应),掌握其各自的特点,并能对其中比较简单的反应能写出反应速率与浓度关系的微分式。明确温度、活化能对反应速率的影响,理解阿仑尼乌斯经验式中各项的含义,计算Ea、A、k等物理量。掌握链反应的特点。掌握稳态近似法、平衡态法和速控步骤法等近似处理方法。理解碰撞理论和过渡状态理论。了解溶液中反应的特点和溶剂、电解质对反应速率的影响。了解催化反应的特点和常见催化反应的类型。了解光化学反应的特点。

(十一)胶体化学

掌握胶体分散体系的动力性质、光学性质、电学性质等方面的特点,能利用这些特点对胶体粒子大小、带电情况等方面分析并能应用于实践。了解溶胶稳定性特点及电解质对溶胶稳定性的影响,能判断电解质聚沉能力的大小。了解乳状液的种类、乳化剂的作用及在工业和日常生活中的应用。了解大分子溶液与溶胶的异同点。了解唐南平衡。

三主要参考书

《物理化学》上、下册(第四版),天津大学物理化学教研室所编,高等教育出版社,2001年。

四、说明

主要题型可能有:是非题、选择题、填空题、简答题、计算题、综合题等。

中国科学院大学硕士研究生入学考试《普通物理(乙)》考试大纲

一考试科目基本要求及适用范围概述

本《普通物理(乙)》考试大纲适用于中国科学院大学工科类的硕士研究生入学考试。普通物理是大部分专业设定的一门重要基础理论课,要求考生对其中的基本概念有深入的理解,系统掌握物理学的基本定理和分析方法,具有综合运用所学知识分析问题和解决问题的能力。

二考试形式

考试采用闭卷笔试形式,考试时间为180分钟,试卷满分150分。

试卷结构:单项选择题、简答题、计算题,其分值约为1:1:3

三考试内容:

大学工科类专业的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。

四考试要求:

(一)力学

1.质点运动学:

熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。

2.质点动力学:

熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。

3.刚体的转动:

熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。

4.简谐振动和波:

熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。

5.狭义相对论基础:

理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础。

(二)电磁学

1.静电场:

熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。理解并掌握:高斯定理,环路定理,静电场中导体及电介质问题,电容、静电场能量。

2.稳恒电流的磁场:

熟练掌握和灵活运用:磁感应强度矢量,磁场的叠加原理,毕奥—萨伐尔定律及应用,磁场的高斯定理、安培环路定理及应用。理解并掌握:磁场对载流导体的作用,安培定律,运动电荷的磁场、洛仑兹力。了解:磁介质,介质的磁化问题,基本实验。

3.电磁感应:

熟练掌握和灵活运用:法拉第电磁感应定律,楞次定律,动生电动势。理解并掌握:自感、互感、自感磁能,互感磁能,磁场能量。

4.直流与交流电路:

熟练掌握和灵活运用:基本概念和定义。理解并掌握:复杂交直流电路的解法。

5.电磁场理论与电磁波:

熟练掌握和灵活运用:位移电流,麦克斯韦方程组。理解并掌握:电磁波的产生与传播,电磁波的基本性质,电磁波的能流密度。

6.电磁学单位制:

理解:电磁学国际单位制。

(三)光学

1.光波场的描述:

能写出各种光波的波函数;能正确表述光波的各种偏振状态。

2.光的干涉:

正确理解波的叠加原理和相干光的含义;理解各种典型干涉装置(杨氏实验、尖劈、牛顿环、迈克尔孙干涉仪、法布里-珀罗干涉仪、干涉滤光片)的工作原理;能解释各种典型干涉装置产生的干涉图样的特点;了解上述装置干涉场中的光强分布。

3.光的衍射:

正确理解产生光的衍射现象的机理;掌握处理衍射问题的基本原理;能灵活运用半波带法解释几种典型装置(夫琅禾费单缝、圆孔衍射,夫琅禾费多缝衍射,菲涅耳圆孔和圆屏衍射)的衍射现象;了解上述装置衍射场中的光强分布问题。

4.光的偏振:

掌握线偏振光的获得与检验;理解各种偏振光器件(偏振片、波片)的工作原理;能熟练运用各种偏振光器件产生和检验偏振光;能熟练运用马吕公式求解问题;了解反射和折射光的偏振;了解光在各向异性介质中的传播:能正确描述和解释双折射现象。

(四)原子物理

1.原子的量子态与精细结构:

理解并掌握:α粒子散射实验和卢瑟福原子模型。熟练掌握和灵活运用:氢原子和类氢离子的光谱,玻尔的氢原子理论,夫兰克-赫兹实验与原子能级,原子中电子轨道运动的磁矩,史特恩-盖拉赫实验,电子自旋的假设,碱金属原子的光谱,原子实的极化和轨道贯穿,碱金属原子光谱的精细结构,电子自旋同轨道运动的相互作用,单电子辐射跃迁的选择定则,氢原子光谱的精细结构。

2.多电子原子:

熟练掌握和灵活运用:氦的光谱和能级,具有两个价电子的原子态,泡利原理与同科电子,辐射跃迁的普用选择定则;元素性质的周期性变化,原子的电子壳层结构,原子基态的电子组态。

3.在磁场中原子:

熟练掌握和灵活运用:原子的磁矩,外磁场对原子的作用,塞曼效应。

(五)热学

1.气体分子运动论:

理解并掌握:理想气体状态方程,理想气体的压强公式,麦克斯韦速率分布律,玻耳兹曼分布律,能量按自由度均分定理,气体的输运过程。

2.热力学:

理解:热力学第一定律,热力学第一定律的应用,循环过程、卡诺循环,热力学第二定律;了解:低温物理现象。

五主要参考教材:

全国重点大学工科类普通物理教材

中国科学院大学硕士研究生入学考试

《无机化学》考试大纲

考试科目基本要求及适用范围概述:

本考试大纲适用于报考中国科学院大学化学、化工及材料学科类专业的硕士研究生入学考试。

要求考生全面系统地掌握无机化学的基本概念、基本理论、基本计算,并能很好地解释无机化学中的一些现象和事实,具备较强的分析问题和解决问题的能力。

考试形式

闭卷考试,笔试,考试时间180分钟,总分150分。

试卷结构

选择题,填空题,问答题,计算题等

考试内容:

1.物质状态

熟练掌握理想气体状态方程,分压定律,分体积定律,了解实际气体的vanderWaals方程,由分子运动论推导理想气体定律;掌握液体的蒸发,沸点;了解晶体的外形与内部结构。

2.原子结构

理解氢原子光谱和玻尔理论,波粒二象性,几率密度和电子云,波函数的空间图象,四个量子数,多电子原子的能级。掌握核外电子排布的原则及其与元素周期表的关系,元素基本性质的周期性。

3.化学键与分子结构

掌握离子键的形成与特点,离子的特征,离子晶体,晶格能;掌握共价键的本质、原理和特点。灵活运用杂化轨道理论,价层电子对互斥理论,分子轨道理论。理解键参数与分子的性质。理解分子晶体和原子晶体;金属键的共性改价理论和能带理论,金属晶体;极性分子和非极性分子,分子间作用力,离子的极化,氢键。

4.氢和稀有气体

了解氢的成键特征,氢的性质、制备方法,氢的化合物氙的性质及化合物,稀有气体的空间结构。

5.化学热力学初步

熟练掌握热力学基本概念,热力学第一定律,可逆途径;灵活运用化学反应的热效应,盖斯定律,生成热与燃烧热,从键能估算反应热;了解反应方向概念,理解反应焓变对反应方向的影响,状态函数熵和吉布斯自由能。

6.化学反应速率

了解反应速率理论,掌握反应速率的影响因素。

7.化学平衡

掌握化学反应的可逆性和化学平衡;灵活运用平衡常数,标准平衡常数Kθ与△rGmθ的关系,理解化学平衡移动的影响因素。

8.溶液

了解溶液浓度的表示方法,灵活运用溶解度原理和分配定律;掌握非电解质稀溶液的依数性;了解分散体系和溶胶的制备、性质,溶胶的电泳和粒子结构,溶胶的聚沉和稳定性,高分子溶液。

9.电解质溶液

了解酸碱理论的发展,理解强电解质溶液理论;熟练掌握并灵活运用弱酸、弱碱的解离平衡和盐的水解,难溶性强电解质的沉淀溶解平衡。

10.氧化还原反应

熟练掌握基本概念,氧化还原反应方程式的配平,原电池和电极电势。灵活运用电池电动势与化学反应吉布斯自由能的关系,理解电极电势的影响因素。熟练掌握电极电势的应用,电势图解及其应用。了解化学电池,电解。

11.卤素

了解卤素的通性,卤素单质及其化合物,含氧酸的氧化还原性。

12.氧族元素

了解氧族元素的通性,氧,臭氧,水,过氧化氢,硫及其化合物,掌握无机酸强度的变化规律。

13.氮族元素

了解氮族元素的通性,氮及其化合物,磷及其化合物,砷、锑、铋及其化合物,盐类的热分解。

14.碳族元素

了解碳族元素的通性,碳族元素的单质及其化合物,理解无机化合物的水解性。

15.硼族元素

了解硼族元素的通性,硼族元素的单质及其化合物,掌握惰性电子对效应和周期表中的斜线关系。

16.碱金属和碱土金属

了解碱金属和碱土金属的通性,理解碱金属和碱土金属的单质及其化合物,离子晶体盐类的水解性。

17.铜、锌副族

一般了解铜族元素的通性、单质及其化合物,理解IB族与IA族元素性质对比;

一般了解锌族元素的通性、单质及其化合物,理解IIB族与IIA族元素性质对比。

18.配位化合物

理解配位化合物的基本概念,熟练掌握配合物的化学键理论,理解并掌握配位化合物的稳定性,了解配位化合物的重要性。

19.过渡金属(I)

一般了解钛、钒、铬、锰各分族元素及其重要化合物,理解物质显色规律以及呈色原因及影响因素。

20.过渡金属(II)

一般了解铁系、铂系元素及其重要化合物,理解过渡元素的通性。

21.镧系及锕系元素

一般了解各系元素的电子层结构,掌握镧系及锕系元素通性以及重要化合物。

22.原子核化学

一般了解核结构、理解核反应及核能释放。

参考教材:

1.《无机化学》第三版,曹锡章等编著,高等教育出版社,2003年出版。

2.《无机化学》(修订版),张祖德编著,中国科学技术大学出版社,2008年出版。

3.基础无机化学(上、下),原著:张淑民,修订:吴集贵,王流芳,兰州大学出版社,1995(上册),1996(下册)出版。

中国科学院大学硕士研究生入学考试

《《高分子化学与物理》考试大纲

本《高分子化学与物理》考试大纲适用于中国科学院大学高分子化学与物理专业的硕士

研究生入学考试。高分子化学与物理是化学学科的基础理论课。高分子化学内容主要包括连锁聚合反应、逐步聚合反应和聚合物的化学反应等聚合反应原理,要求考生熟悉相关高分子化学的基本概念,掌握常用高分子化合物的合成方法、合成机理及大分子化学反应,能够写出主要聚合物的结构式,熟悉其性能并且能够对给出的现象给以正确、合理的解释。高分子物理内容主要包括高分子的链结构与聚集态结构,聚合物的分子运动,聚合物的溶液性质以及聚合物的流变性能、力学性能、介电性能、导电性能和热性能等,要求考生熟悉相关高分子物理的基本概念,掌握有关聚合物的多层次结构及主要物理、机械性能的基本理论和基本研究方法。考生应具备运用高分子化学与物理的知识分析问题、解决问题的能力。

一考试基本要求

1.熟练掌握高分子化学与物理的基本概念和基础理论知识;

2.能够灵活运用所学知识来分析问题、解决问题。

二考试方式与时间

硕士研究生入学《高分子化学与物理》考试为闭卷笔试,考试时间为180分钟,总分150分。

三考试主要内容和要求

高分子化学部分

(一)绪论

1、考试内容

(1)高分子的基本概念;(2)聚合物的命名及分类;(3)分子量;(4)大分子微结构;(5)线形、支链形和体形大分子;(6)聚合物的物理状态;(6)聚合物材料与强度。

2、考试要求

【掌握内容】

(1)基本概念:单体、聚合物、聚合反应、结构单元、重复单元、单体单元、链节、聚合度、均聚物、共聚物。(2)加成聚合与缩合聚合;连锁聚合与逐步聚合。(3)从不同角度对聚合物进行分类。(4)常用聚合物的命名、来源、结构特征。(5)线性、支链形和体形大分子。(6)聚合物相对分子质量及其分布。(7)大分子微结构。(8)聚合物的物理状态和主要性能。

【熟悉内容】

(1)系统命名法。(2)典型聚合物的名称、符号及重复单元。(3)聚合物材料和机械强度。

【了解内容】

高分子化学发展历史。

(二)逐步聚合反应

1、考试内容

(1)缩聚反应;(2)线形缩聚反应机理;(3)线形缩聚动力学;(4)影响线型缩聚物聚合度的因素及控制方法;(5)分子量的分布;(6)逐步缩合的实施方法;(7)重要线型逐步聚合物;(8)体型缩聚;(9)凝胶化作用和凝胶点。

2、考试要求

【掌握内容】

(1)逐步聚合的基本概念:官能团,平均官能度,线形缩聚,反应程度,当量系数,体型缩聚,无规预聚物,结构预聚物,凝胶化作用,凝胶点。(2)缩聚反应的类型及典型聚合物的命名。(3)逐步聚合反应的特点。(4)逐步聚合官能团等活性理论。(5)缩聚反应聚合物分子量的控制。(6)典型线性和体型缩聚物的合成方法。(7)Carothers法和统计法计算体型逐步聚合反应的凝胶点。(8)线形逐步聚合与体型逐步聚合的比较。(9)逐步聚合与连锁聚合的比较。

【熟悉内容】

(1)线形逐步聚合动力学。(2)缩聚物的分子量分布。(3)影响聚合反应动力学方程的因素。

(三)自由基聚合

1、考试内容

(1)自由基聚合机理;(2)链引发反应;(3)聚合速率;(4)分子量和链转移反应;(5)分子量分布;(6)阻聚与缓聚;(7)聚合热力学;(8)可控/活性自由基聚合。

2、考试要求

【掌握内容】

(1)自由基聚合的单体。(2)自由基基元反应每步反应特征;自由基聚合反应特征。(3)常用引发剂的种类;引发剂分解动力学;引发剂效率;影响引发剂效率的因素;引发剂选择原则。(4)聚合动力学研究方法;自由基聚合微观动力学方程推导;自由基聚合反应速率常数;自动加速现象。(5)无链转移反应时的分子量;链转移反应对聚合度的影响。(6)影响聚合反应速率和分子量的因素(温度、压力、单体、引发剂)。(7)阻聚与缓聚。(8)聚合热力学。

【熟悉内容】

(1)热聚合、光引发聚合、辐射聚合、等离子体引发聚合、微波引发聚合。(2)聚合过程中速率变化的类型。(3)自由基聚合的相对分子质量分布。(4)反应速率常数的测定。

【了解内容】

热引发和光引发动力学。

(四)自由基共聚合

1、考试内容

(1)共聚物的类型和命名;(2)二元共聚物的组成;(3)竞聚率的测定和影响因素;(4)单体和自由基的活性;(5)Q-e概念。

2、考试要求

【掌握内容】

(1)共聚合基本概念:无规共聚物,接枝共聚物,交替共聚物,嵌段共聚物,竞聚率,恒比点。(2)共聚物的分类和命名。(3)二元共聚组成微分方程推导。(4)理想共聚、交替共聚、非理想共聚(有或无恒比点)的定义,根据竞聚率值判断两单体对的共聚类型及共聚组成曲线类型。(5)共聚物组成控制方法。(6)共聚物微观结构与链段分布。(7)体和自由基活性的表示方法,取代基的共轭效应、极性效应及位阻效应对单体和自由基活性的影响。(8)Q-e值的物理意义,如何通过Q、e值判断两单体的共聚情况,Q-e方程的优点与不足。

【熟悉内容】

(1)共聚合的意义及典型共聚物。(2)影响竞聚率的因素和竞聚率测定方法。(3)共聚物的组成与转化率的关系。(4)多元共聚。(5)共聚合速率。

(五)聚合方法

1、考试内容

(1)本体聚合;(2)溶液聚合;(3)悬浮聚合;(4)乳液聚合。

2、考试要求

【掌握内容】

(1)四种聚合实施方法的基本组成及优缺点。(2)悬浮聚合与乳液聚合的机理及动力学。

【熟悉内容】

(1)典型聚合物的聚合实施方法。(2)聚合方法的选择。

(六)阴离子聚合

1、考试内容

(1)阴离子聚合的单体;(2)阴离子引发体系和引发;(3)阴离子聚合引发剂和单体的匹配;(4)活性阴离子聚合;(5)丁基锂的缔合现象和定向聚合作用。

2、考试要求

【掌握内容】

(1)阴离子聚合常见单体与引发剂。(2)阴离子聚合机理,聚合速率及聚合度。(3)影响阴离子聚合因素。(4)活性阴离子聚合原理、特点及应用。(5)阳离子聚合、阴离子聚合、自由基聚合的比较。(6)离子共聚。

(七)阳离子聚合

1、考试内容

(1)阳离子聚合的单体;(2)阳离子引发体系;(3)阳离子聚合机理;(4)影响阳离子聚合的因素;(5)聚异丁烯和丁基橡胶。

2、考试要求

【掌握内容】

(1)阳离子聚合常见单体与引发剂。(2)阳离子聚合机理。(3)影响阳离子聚合因素。(4)异丁烯的聚合和丁基橡胶。

【熟悉内容】

阳离子聚合反应动力学。

(八)配位聚合

1、考试内容

(1)聚合物的立体异构现象;(2)配位聚合的基本概念;(3)Ziegler-Natta引发剂;(4)丙烯的配位聚合;(5)乙烯的配位聚合;(6)极性单体的配位聚合;(6)茂金属引发剂;(7)

共轭二烯烃的配位聚合。

2、考试要求

【掌握内容】

(1)配位聚合基本概念:配位聚合,有规立构聚合,定向聚合,立构规整聚合物,立构规整度,等规度。(2)Ziegler-Natta催化剂的组成及性质。(3)α-烯烃配位聚合机理(单金属机理,双金属机理,终止反应)。(4)二烯烃的配位聚合(丁二烯,异戊二烯)。(5)茂金属催化剂的特点。(6)配位聚合催化剂的发展。

【熟悉内容】

(1)影响Ziegler-Natta催化剂活性的因素;(2)配位聚合的应用。

(九)开环聚合

1、考试内容

(1)环烷烃开环聚合热力学;(2)杂环开环聚合机理和动力学特征;(3)环氧化物的阴离子开环聚合;(4)其他环醚的阳离子开环聚合;(5)三聚甲醛(三氧六环)的阳离子开环聚合;(6)环酰胺开环聚合;(7)环硅氧烷的开环聚合;(8)聚磷氮烯;(9)羰基化合物的聚合。

2、考试要求

【掌握内容】

(1)环烷烃开环聚合热力学;(2)环氧化物、环醚、三聚甲醛(三氧六环)、环酰胺、环硅氧烷的开环聚合,聚磷氮烯的合成方法。

【熟悉内容】

(1)聚合单体特征及动力学;(2)羰基化合物的聚合。

(十)聚合物的化学反应

1、考试内容

(1)聚合物的基团反应;(2)接枝聚合反应和嵌段聚合反应;(3)聚合物的降解与交联;(4)聚合物的老化与防老化。

2考试要求

【掌握内容】

(1)聚合物化学反应的基本概念:几率效应,邻近基团效应。(2)聚合物与小分子反应活性的比较及影响因素。(3)典型的聚合物的化学反应。(4)聚乙酸乙酯的反应。(5)芳香烃的取代反应。(6)制备嵌段聚合物及接枝聚合物常用的方法。(7)聚合物交联反应:橡胶的硫化、聚烯烃的过氧化物交联。(8)典型聚合物的热降解反应。

【熟悉内容】

(1)纤维素的反应。(2)光致交联固化。(3)氧化降解、光降解和光氧化降解、聚合物老

化机理及老化的防止与利用。(4)功能高分子的定义及主要种类。

高分子物理部分

(一)高分子的链结构

1、考试内容

(1)高分子链的构型;(2)高分子链的内旋转和高分子链的柔顺性;(3)分子链的构象统计;(4)高分子晶格中链的构象;(5)蠕虫状链。

2、考试要求

【掌握内容】

(1)化学组成:基团(极性与非极性),单体单元(均聚与共聚)及末端基。(2)键接结构:头-头(尾-尾)及头-尾结构。(3)构型(旋光异构,几何异构)。(4)高分子链的支化与交联。(5)基本概念:均方末端距,高斯链,构象。(6)高分子链长、末端距的计算方法;高分子链的柔顺性及本质。

【熟悉内容】

(1)高分子链构型的测定方法。(2)高分子链的旋转及构象统计。

(二)高分子溶液

1、考试内容

(1)聚合物的溶解;(2)柔性高分子溶液热力学性质;(3)高分子溶液的相平衡;(4)聚电解质溶液;(5)聚合物的浓溶液。

2、考试要求

【掌握内容】

(1)基本概念:溶度参数,Huggins参数,θ温度,第二维利系数A2,聚合物增塑,凝胶,冻胶。(2)高分子的溶解过程;溶剂对聚合物溶解能力判定原则;高分子溶液与理想溶液的偏差;Flory-Huggins高分子溶液理论;Flory-Krigbaum稀溶液理论。(3)Huggins参数、θ温度及第二维利系数A2之间的关系;θ溶液与理想溶液。(4)高分子浓溶液及应用。

【熟悉内容】

(1)Flory-Huggins晶格理论的假定条件及局限性。(2)第二维利系数的测定。

(三)高分子的分子量和分子量分布

1、考试内容

(1)聚合物分子量的统计意义;(2)聚合物分子量的测定方法;(3)聚合物分子量分布及测定方法。

2、考试要求

【掌握内容】

(1)基本概念:相对黏度,增比黏度,比浓黏度,比浓对数黏度,特性黏度,数均分子量、重均分子量、粘均分子量、Z均分子量。(2)聚合物分子量的统计意义;常用的统计平均相对摩尔质量。(3)相对摩尔质量分布宽度及表示方法。(4)聚合物分子量的测定原理;不同测定方法的适用范围。(5)特性黏度和相对摩尔质量的关系。(6)高分子的分级方法。

【熟悉内容】

(1)Ubbelohde(乌氏黏度计)的原理。(2)Flory黏度理论。

(四)高分子的聚集态结构

1、考试内容

(1)聚合物的非晶态;(2)聚合物的结晶态;(3)聚合物的取向结构;(4)高分子液晶;(5)高分子的多组份体系。

2、考试要求

【掌握内容】

(1)基本概念:单晶,片晶,球晶,纤维状晶,串晶,伸直链晶体;结晶度,取向,取向度;内聚能密度,相容性。(2)Keller折叠链模型;无规线团模型;局部有序模型。(3)高分子链结晶动力学。(4)液晶的化学结构及晶型;向列型高分子液晶的流动特征。(5)结晶度及取向度的测定方法,液晶的表征。(6)高分子的多组份体系。

【熟悉内容】

(1)不同晶型的形成条件。(2)取向对聚合物材料的影响。

(五)聚合物的分子运动

1、考试内容

(1)聚合物的分子运动的特点;(2)聚合物的玻璃化转变;(3)玻璃化温度与链结构的关系及其调节途径;(4)牛顿流体和非牛顿流体;(5)聚合物熔体的剪切黏度;(6)聚合物熔体的弹性表现;(7)拉伸黏度;(8)聚合物分子运动的研究方法。

2、考试要求

【掌握内容】

(1)聚合物分子运动的特点。(2)玻璃化转变、粘弹转变、熔点。(3)玻璃化转变温度与链结构的关系。(4)基本概念:牛顿流体,非牛顿流体,表观黏度,零剪切黏度,剪切变稀(增稠),熔融指数,挤出胀大,熔体破裂,法向应力效应,黏度与频率依赖性。(5)聚合物熔体黏度测定方法。(6)聚合物熔体流动特性与分子结构关系。

【熟悉内容】

Rouse模型,管子模型及蛇行理论。

(六)聚合物的力学性能

1、考试内容

(1)玻璃态和结晶态聚合物的力学性质;(2)高弹态;(3)粘弹态;(4)聚合物的塑性和屈服;(5)聚合物的断裂和强度。

2、考试要求

一、高弹性

【掌握内容】

(1)基本概念:杨氏模量,切变模量,本体模量,熵弹性。(2)橡胶高弹形变的特点与本质。

【熟悉内容】

(1)橡胶弹性动力学分析及统计理论。(2)典型的热塑性弹性体。

二、聚合物的粘弹性

【掌握内容】

(1)基本概念:蠕变,应力松弛,动态粘弹性,滞后与阻尼,Boltzmann叠加原理,时-温等效原理,松弛(迟后)时间及其松弛(迟后)时间谱。(2)高分子材料(包括高分子固体,熔体及浓溶液)的力学行为特性,粘弹性本质。(3)描述聚合物粘弹性的力学模型及所描述的聚合物的力学过程。

【熟悉内容】

(1)Maxwell模型与Voigt(或Kelvin)模型的数学推导。(2)WLF方程及应用。(3)粘弹性的研究方法。

三、聚合物的屈服和断裂

【掌握内容】

(1)基本概念:屈服应力,断裂应力,冲击强度,疲劳,银纹,剪切带,脆性断裂,韧性断裂,应力集中。(2)晶态、非晶态及取向聚合物应力-应变特点。(3)聚合物的屈服与增韧机理。(4)影响聚合物强度的因素与增强途径、机理。

【熟悉内容】

断裂理论。

(七)聚合物的电学性质

1、、、、考试内容考试内容考试内容考试内容

(1)聚合物的极化及介电松弛行为;(2)聚合物的压电极化和焦电极化;(3)聚合物的驻极体及热释电;(4)聚合物的电击穿;(5)聚合物的静电现象;(6)聚合物的导电率;(7)有机导体及其结构化学;(8)离子导电;(9)聚合物的光导性。

2、、、、考试要求考试要求考试要求考试要求

【掌握内容】

(1)基本概念:介电极化,介电松弛,掺杂,压电系数,焦电系数,聚合物压电体。(2)聚合物的导电率、导电聚合物的结构与导电性。

【熟悉内容】

(1)聚合物的电击穿。(2)高分子的静电现象。

(八)聚合物的热性能、光学性能

1、考试内容

(1)聚合物的热稳定性和耐高温的聚合物材料;(2)聚合物的热膨胀;(3)聚合物的热传导;聚合物的光学性能。

2、考试要求

【掌握内容】

(1)聚合物的热稳定性、热膨胀、热传导,热变形温度。(2)折光指数,透明度,雾度,双折射,散射。

四试卷结构

试题类型主要有:名词解释、判断题、填空题、选择题、计算题、简答题(包括写反应式、叙述反应原理、聚合物特性、聚合方法等),综合论述题。

五参考教材

(1)潘祖仁主编,《高分子化学》(第五版),化学工业出版社,2011。

(2)何曼君等编,《高分子物理》(第三版),复旦大学出版社,2007。

(3)符若文,李谷,冯开才编,《高分子物理》,化学工业出版社,2005。

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

当前热点关注

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •