2019年集美大学硕士研究生入学考试初试自主命题考试大纲:高等代数_-查字典考研网
 
请输入您要查询的关键词
  查字典考研网 >> 院校信息 >> 考研大纲 >> 2019年集美大学硕士研究生入学考试初试自主命题考试大纲:高等代数

2019年集美大学硕士研究生入学考试初试自主命题考试大纲:高等代数

考研时间: 2018-09-15 来源:查字典考研网

  考试科目代码:[805]

  考试科目名称:高等代数

  一、考核目标

  (一)考查考生对高等代数的基本概念、主要理论、重要方法的掌握程度。

  (二)考查考生的数学抽象思维、逻辑推理及运算求解能力,提高分析问题、解决问题能力。

  二、试卷结构

  (一)考试时间:180分钟,满分:150分

  (二)题型结构

  1、填空题:6小题,每小题5分,共30分

  2、解答题:7小题,每小题15或20分,共120分

  三、答题方式

  闭卷笔试

  四、考试内容

  (一)多项式,20分

  考试内容:

  整除理论、因式分解理论、根的理论。

  考试要求:

  (1)理解带余除法、整除、最大公因式、互素、重因式、根等有关结论。

  (2)掌握不可约多项式的判别与证明、综合除法、标准分解式与有理根的求法。

  (3)理解矩阵或线性变换的多项式。

  (二)行列式与线性方程组,20分

  考试内容:

  行列式的计算、线性方程组解的理论。

  考试要求:

  (1)理解行列式概念,掌握行列式的常用计算方法;了解行列式与方程组、可逆矩阵、矩阵秩、二次型、特征值等的关系。

  (2)理解线性方程组解的求法、判定与结构,掌握含参数线性方程组的讨论与求解,理解齐次方程组的基础解系或解空间与系数矩阵秩的关系。

  (三)矩阵,20分

  考试内容:

  矩阵的运算、矩阵的秩与矩阵的分解、分块矩阵及其初等变换的应用。

  考试要求:

  (1)掌握矩阵的各种运算、矩阵的秩、可逆矩阵。

  (2)了解初等矩阵与初等变换的关系、矩阵分解、分块矩阵及其应用。

  (四)二次型,20分

  考试内容:

  标准形与规范形、正定问题。

  考试要求:

  (1)掌握化二次型为标准形或规范形的方法、正定问题的判定与证明。

  (2)了解合同、负定、半正定的概念。

  (五)线性空间,20分

  考试内容:

  向量组的线性相关性、基、维数和坐标、子空间的和与直和。

  考试要求:

  (1)了解线性空间的概念、性质以及同构思想。

  (2)理解向量组线性无关的常规证法,基与维数的求法与证明。

  (3)掌握子空间直和的证明。

  (六)线性变换,20分

  考试内容:

  线性变换的概念、线性变换的矩阵、相似、特征值特征向量与对角化、值域、核与不变子空间。

  考试要求:

  (1)了解线性变换与方阵的同构对应关系。

  (2)理解线性变换、值域与核、不变子空间的概念。

  (3)会求线性变换在基下的矩阵,理解相似的概念与性质。

  (4)掌握特征值与特征向量的求法与证明,对角化问题的判别与讨论。

  (七)Jordan标准形,10分

  考试内容:

  最小多项式、Jordan标准形。

  考试要求:

  (1)了解不变因子、初等因子的求法以及与矩阵相似的关系。

  (2)理解最小多项式的概念与基本性质,掌握Jordan标准形的求法与应用。

  (八)欧氏空间,20分

  考试内容:

  内积与标准正交基、正交变换和对称变换。

  考试要求:

  (1)了解欧氏空间、正交补的概念,理解标准正交基的性质及其求法。

  (2)理解正交变换和对称变换的主要特征及相关证明,

  (3)掌握实对称矩阵的正交对角化的计算,利用实对称矩阵性质进一步讨论正定问题。

  五、主要参考书目

  (一)王萼芳,石生明主编:《高等代数》(第三版),高等教育出版社,2003版

  (二)徐仲等主编:《高等代数导教导学导考》,西北工业大学出版社,2004版

点击显示
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读

当前热点关注

  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  •